The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation

Online Access: Get full text
doi: 10.1016/j.palaeo.2005.05.011
Author(s): Brumsack, Hans J.
Author Affiliation(s): Primary:
Oldenburg University, Institute for Chemistry and Biology of Marine Environment, Oldenburg, Federal Republic of Germany
Other:
Université de Bordeaux I, France
Monash University, Australia
University of Copenhagen, Denmark
Volume Title: Exploring life and environments through time; celebrating the 40th anniversary of Paleo-3
Volume Author(s): Bottjer, David J., editor; Corrège, Thierry; Kershaw, Peter; Surlyk, Finn
Source: Exploring life and environments through time; celebrating the 40th anniversary of Paleo-3, edited by David J. Bottjer, Thierry Corrège, Peter Kershaw and Finn Surlyk. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), p.344-361. Publisher: Elsevier, Amsterdam, Netherlands. ISSN: 0031-0182 CODEN: PPPYAB
Note: In English. 140 refs.; illus., incl. 2 tables
Summary: Organic carbon-rich sediments are enriched in several redox-sensitive and stable sulfide-forming trace metals (TM) and form an important sink in global TM cycles. In today's ocean such sediments are deposited in coastal upwelling areas like those in the Gulf of California, off Peru or off the Namibian coast and euxinic basins like the Black Sea. In an attempt to distinguish both environments by their specific TM patterns, some important conclusions may be drawn: 1) The TM enrichment seen in both environments broadly is rather similar. 2) Upwelling sediments are often enriched in Cd and P and depleted in Co and Mn. 3) Sapropels have a tendency towards higher enrichments in Ba and Mo, S, Re, As, Cu, Ni, Sb, and Fe, reflecting the strong sulfidation in an anoxic water column. 4) Upwelling systems cover a broad range of environmental settings where the steepness of the slope, the proximity of H2S to the sediment seawater interface and the intensity of bio-accumulation and regeneration play an important role for TM accumulation. 5) The TM content of anoxic basins is mainly controlled by TM availability in the water column and sedimentation rate. 6) Enhanced bio-productivity is the main switch turning an oxygenated into an anoxic environment. Cretaceous black shales (OAE 2) exhibit TM signatures of both, coastal upwelling areas and sapropels. The strong enrichments in Cd, Mo, Tl, V, Cu, Ni, (Bi), and Sb demonstrate that bio-accumulation and presence of H2S in the water column and associated sulfidation processes persisted during this time interval in large parts of the Proto-Atlantic. The usefulness of Ba as a paleoproductivity-proxy is obscured by diagenesis. The extreme accumulation in Ag and Zn requires either an additional TM source, for instance hydrothermal input, or a different TM seawater composition during the Cretaceous. The geochemical data suggest, that the major driving force for the widespread occurrence of C/T black shales seems to be the increase in volcanic activity and associated CO2-input throughout the Cretaceous. The ocean-atmosphere system operated in a mode different from today during this time interval. After conversion of the "nutrient" CO2 into organic matter the system switched back into the "normal" operational mode. Abstract Copyright (2006) Elsevier, B.V.
Year of Publication: 2006
Research Program: ODP Ocean Drilling Program
Key Words: 06 Petrology, Sedimentary; Africa; Air-sea interface; Alkaline earth metals; Anaerobic environment; Barium; Bioaccumulation; Bioavailability; Black Sea; Black shale; Cadmium; Carbon dioxide; Chemical composition; Clastic rocks; Coastal environment; Continental margin; Continental margin sedimentation; Cretaceous; Discharge; Dissolved oxygen; East Mediterranean; East Pacific; Enrichment; Fixation; Geochemical cycle; Geochemistry; Global; Gulf of California; Habitat; Hydrothermal vents; Leg 207; Major elements; Manganese; Mediterranean Sea; Mesozoic; Metals; Modern analogs; Molybdenum; Namibia; North Pacific; Northeast Pacific; Nutrients; Ocean Drilling Program; Organic compounds; Oxygen; Pacific Ocean; Paleoecology; Peru; Phosphorus; Precipitation; Productivity; Rhenium; Sapropel; Sedimentary rocks; Sedimentation; Sedimentation rates; Sediments; Solutes; South America; Southern Africa; Sulfides; Sulfur; Theoretical models; Trace metals; Transport; Upwelling
Coordinates: N090200 N092800 W0541100 W0544400
Record ID: 2006043713
Copyright Information: GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data from CAPCAS, Elsevier Scientific Publishers, Amsterdam, Netherlands
LEADER 07298naaaa2201117zu 4500
001 2006043713
003 ViAlAGI
005 20190626145846.0
008 160927e20060322ne a 0 0 eng d
034 0 |a a  |d W0544400  |e W0541100  |f N092800  |g N090200 
040 |a ViAlAGI  |c ViAlAGI 
072 7 |a 06A  |2 georeft 
100 1 |a Brumsack, Hans J.  |u Oldenburg University, Institute for Chemistry and Biology of Marine Environment, Oldenburg 
245 1 4 |a The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation 
300 |a p. 344-361 
500 |a In English. 140 refs. 
500 |a Research program: ODP Ocean Drilling Program 
500 |a Affiliation: Oldenburg University, Institute for Chemistry and Biology of Marine Environment; Oldenburg; DEU; Federal Republic of Germany 
500 |a Affiliation: Université de Bordeaux I; ; FRA; France 
500 |a Affiliation: Monash University; ; AUS; Australia 
500 |a Affiliation: University of Copenhagen; ; DNK; Denmark 
500 |a Source note: Exploring life and environments through time; celebrating the 40th anniversary of Paleo-3, edited by David J. Bottjer, Thierry Corrège, Peter Kershaw and Finn Surlyk. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), p.344-361. Publisher: Elsevier, Amsterdam, Netherlands. ISSN: 0031-0182 
500 |a Publication type: journal article 
504 |b 140 refs. 
510 3 |a GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data from CAPCAS, Elsevier Scientific Publishers, Amsterdam, Netherlands 
520 |a Organic carbon-rich sediments are enriched in several redox-sensitive and stable sulfide-forming trace metals (TM) and form an important sink in global TM cycles. In today's ocean such sediments are deposited in coastal upwelling areas like those in the Gulf of California, off Peru or off the Namibian coast and euxinic basins like the Black Sea. In an attempt to distinguish both environments by their specific TM patterns, some important conclusions may be drawn: 1) The TM enrichment seen in both environments broadly is rather similar. 2) Upwelling sediments are often enriched in Cd and P and depleted in Co and Mn. 3) Sapropels have a tendency towards higher enrichments in Ba and Mo, S, Re, As, Cu, Ni, Sb, and Fe, reflecting the strong sulfidation in an anoxic water column. 4) Upwelling systems cover a broad range of environmental settings where the steepness of the slope, the proximity of H<2`S to the sediment seawater interface and the intensity of bio-accumulation and regeneration play an important role for TM accumulation. 5) The TM content of anoxic basins is mainly controlled by TM availability in the water column and sedimentation rate. 6) Enhanced bio-productivity is the main switch turning an oxygenated into an anoxic environment. Cretaceous black shales (OAE 2) exhibit TM signatures of both, coastal upwelling areas and sapropels. The strong enrichments in Cd, Mo, Tl, V, Cu, Ni, (Bi), and Sb demonstrate that bio-accumulation and presence of H<2`S in the water column and associated sulfidation processes persisted during this time interval in large parts of the Proto-Atlantic. The usefulness of Ba as a paleoproductivity-proxy is obscured by diagenesis. The extreme accumulation in Ag and Zn requires either an additional TM source, for instance hydrothermal input, or a different TM seawater composition during the Cretaceous. The geochemical data suggest, that the major driving force for the widespread occurrence of C/T black shales seems to be the increase in volcanic activity and associated CO<2`-input throughout the Cretaceous. The ocean-atmosphere system operated in a mode different from today during this time interval. After conversion of the "nutrient" CO<2` into organic matter the system switched back into the "normal" operational mode. Abstract Copyright (2006) Elsevier, B.V. 
650 7 |a Air-sea interface  |2 georeft 
650 7 |a Alkaline earth metals  |2 georeft 
650 7 |a Anaerobic environment  |2 georeft 
650 7 |a Barium  |2 georeft 
650 7 |a Bioaccumulation  |2 georeft 
650 7 |a Bioavailability  |2 georeft 
650 7 |a Black shale  |2 georeft 
650 7 |a Cadmium  |2 georeft 
650 7 |a Carbon dioxide  |2 georeft 
650 7 |a Chemical composition  |2 georeft 
650 7 |a Clastic rocks  |2 georeft 
650 7 |a Coastal environment  |2 georeft 
650 7 |a Continental margin  |2 georeft 
650 7 |a Continental margin sedimentation  |2 georeft 
650 7 |a Cretaceous  |2 georeft 
650 7 |a Discharge  |2 georeft 
650 7 |a Dissolved oxygen  |2 georeft 
650 7 |a Enrichment  |2 georeft 
650 7 |a Fixation  |2 georeft 
650 7 |a Geochemical cycle  |2 georeft 
650 7 |a Geochemistry  |2 georeft 
650 7 |a Global  |2 georeft 
650 7 |a Habitat  |2 georeft 
650 7 |a Hydrothermal vents  |2 georeft 
650 7 |a Major elements  |2 georeft 
650 7 |a Manganese  |2 georeft 
650 7 |a Mesozoic  |2 georeft 
650 7 |a Metals  |2 georeft 
650 7 |a Modern analogs  |2 georeft 
650 7 |a Molybdenum  |2 georeft 
650 7 |a Nutrients  |2 georeft 
650 7 |a Ocean Drilling Program  |2 georeft 
650 7 |a Organic compounds  |2 georeft 
650 7 |a Oxygen  |2 georeft 
650 7 |a Paleoecology  |2 georeft 
650 7 |a Phosphorus  |2 georeft 
650 7 |a Precipitation  |2 georeft 
650 7 |a Productivity  |2 georeft 
650 7 |a Rhenium  |2 georeft 
650 7 |a Sapropel  |2 georeft 
650 7 |a Sedimentary rocks  |2 georeft 
650 7 |a Sedimentation  |2 georeft 
650 7 |a Sedimentation rates  |2 georeft 
650 7 |a Sediments  |2 georeft 
650 7 |a Solutes  |2 georeft 
650 7 |a Sulfides  |2 georeft 
650 7 |a Sulfur  |2 georeft 
650 7 |a Theoretical models  |2 georeft 
650 7 |a Trace metals  |2 georeft 
650 7 |a Transport  |2 georeft 
650 7 |a Upwelling  |2 georeft 
651 7 |a Africa  |2 georeft 
651 7 |a Black Sea  |2 georeft 
651 7 |a East Mediterranean  |2 georeft 
651 7 |a East Pacific  |2 georeft 
651 7 |a Gulf of California  |2 georeft 
651 7 |a Leg 207  |2 georeft 
651 7 |a Mediterranean Sea  |2 georeft 
651 7 |a Namibia  |2 georeft 
651 7 |a North Pacific  |2 georeft 
651 7 |a Northeast Pacific  |2 georeft 
651 7 |a Pacific Ocean  |2 georeft 
651 7 |a Peru  |2 georeft 
651 7 |a South America  |2 georeft 
651 7 |a Southern Africa  |2 georeft 
700 1 |a Corrège, Thierry,  |e editor  |u Université de Bordeaux I 
700 1 |a Kershaw, Peter,  |e editor  |u Monash University 
700 1 |a Surlyk, Finn,  |e editor  |u University of Copenhagen 
773 0 |a Bottjer, David J., editor  |t Exploring life and environments through time; celebrating the 40th anniversary of Paleo-3  |d Amsterdam : Elsevier, Mar. , 22 2006  |k Palaeogeography, Palaeoclimatology, Palaeoecology  |x 0031-0182  |y PPPYAB  |n Exploring life and environments through time; celebrating the 40th anniversary of Paleo-3, edited by David J. Bottjer, Thierry Corrège, Peter Kershaw and Finn Surlyk. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), p.344-361. Publisher: Elsevier, Amsterdam, Netherlands. ISSN: 0031-0182 Publication type: journal article  |g Vol. 232, no. 2-4  |h illus., incl. 2 tables 
856 |u urn:doi: 10.1016/j.palaeo.2005.05.011