The Cretaceous astronomical time scale

Author(s): Locklair, Robert; Hinnov, Linda; Ogg, James
Author Affiliation(s): Primary:
Johns Hopkins University, Baltimore, MD, United States
Purdue University, United States
Volume Title: 33rd international geological congress; abstracts
Source: International Geological Congress [International Geological Congress, Abstracts = Congrès Géologique International, Résumés, Vol.33; 33rd international geological congress, Oslo, Norway, Aug. 6-14, 2008. Publisher:], [location varies], International CODEN: IGABBY
Note: In English
Summary: Many offshore marine sequences of the Cretaceous Period are characterized by decimeter-scale bedding cycles, which typically are expressed by alternations of relatively carbonate-rich (chalk, marl) and carbonate-poor beds (marl, shale, chert). A number of these Cretaceous successions have now been analyzed with spectral techniques to test for hypothesized orbital forcing of these depositional rhythms. The results have facilitated the development of an Astronomical Time Scale (ATS) through extended intervals of the Cretaceous marine record. The high resolution of this ATS provides a means to address rates of change for key Earth processes (seafloor spreading, biotic turnover, etc.) that have been otherwise difficult to evaluate based solely on available radiometric constraints. The ATS also enables an independent assessment of radiometric techniques and can be used for global correlations. Compilation of a continuous record of Cretaceous orbital rhythms was accomplished by time series analysis of rhythmically bedded marine strata from localities across the globe, and stitched together by global chronostratigraphic datums. Multiple high-resolution geochemical and petrophysical time series were constructed from land-based outcrops and cored sections, and from DSDP/ODP cores and boreholes. The most useful measurements were carbonate, TOC, and well log data (FMS/FMI, gamma ray, magnetic susceptibility, photolog scans); in some cases, lithologic codes were found to be useful. Time series from each locality were analyzed at the stage level, and evaluated for stratigraphic completeness, biostratigraphic and magnetostratigraphic constraints. Challenges encountered in the study included the presence of major unconformities (e.g., Campanian and upper Turonian), condensed sections resulting in stratigraphic under-sampling for key orbital parameters (esp. precession), poor core recovery, thus, poor biostratigraphic constraints, poorly resolved measurements, and lack of multiple robust, time-equivalent series for parallel investigation. Nevertheless, suitable time series were identified for every Cretaceous stage with the exception of the Campanian. Case studies for the Maastrichtian and Albian stages will be showcased together with a discussion of applications.
Year of Publication: 2008
Research Program: DSDP Deep Sea Drilling Project
ODP Ocean Drilling Program
Key Words: 03 Geochronology; Albian; Astronomical time scale; Case studies; Climate forcing; Cretaceous; Deep Sea Drilling Project; Geochronology; Lower Cretaceous; Maestrichtian; Marine environment; Mesozoic; Ocean Drilling Program; Orbital forcing; Senonian; Statistical analysis; Time scales; Time series analysis; Upper Cretaceous
Record ID: 2009008458
Copyright Information: GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data supplied by International Geological Congress Organizational Committee

Similar Items