Seismicity and state of stress near the Japan Trench axis off Miyagi, northeast Japan, after the 2011 Tohoku-Oki earthquake

Author(s): Obana, K.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Nakamura, Y.; No, T.; Fujie, G.; Hino, R.; Shinohara, M.
Author Affiliation(s): Primary:
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Other:
Tohoku University, Japan
University of Tokyo, Japan
Volume Title: AGU 2013 fall meeting
Source: American Geophysical Union Fall Meeting, Vol.2013; American Geophysical Union 2013 fall meeting, San Francisco, CA, Dec. 9-13, 2013. Publisher: American Geophysical Union, Washington, DC, United States
Note: In English
Summary: The 2011 Tohoku-Oki earthquake ruptured roughly 200 km wide and 500 km long megathrust along the Japan Trench. The rupture propagated to the trench axis with a maximum slip about 50 m near the trench axis. As a consequence of this large near-trench slip, earthquakes have been activated near the axis of the Japan Trench off Miyagi, northeast Japan. We have conducted ocean bottom seismograph (OBS) experiments in the Japan Trench axis area, surrounding area of the IODP JFAST drilling site, since the occurrence of the 2011 Tohoku-Oki earthquake. Although conventionally used OBS cannot be deployed at seafloor deeper than 6000 m water depth, we used newly developed ultra-deep OBS using ceramic sphere, which can be deployed at a depth of 9000 m, for the observations in the trench axis. The ultra-deep OBS has almost equivalent dimensions and weight with the conventionally used OBS, thus we can handle it in the same manner with the conventionally OBS without any special operation. As a result of a series of the OBS observations, we obtained accurate hypocenter locations and focal mechanisms in both seaward and landward of the trench axis. Earthquakes near the trench axis area were located within the overriding and incoming/subducting plates with very few on the plate interface below the inner trench slope landward of the trench axis. Most of the earthquakes both in the overriding and incoming/subducting plates having normal or strike-slip faulting focal mechanisms with T-axis normal to the trench axis. This indicates that tensional stress is dominant in the trench axis area. However, most seaward part of the seismicity within the overriding plate is characterized by a localized cluster of trench-normal compressional earthquakes, which may relate to spatial variation of the frictional behavior of the shallowest part of the megathrust. On the other hand, trench-normal extensional earthquakes in the incoming/subducting Pacific plate were located at depths shallower than about 35 to 40 km. The deepest trench-normal extensional earthquake observed during OBS observations from December 2012 to January 2013 is slightly shallower than that observed from May to June in 2011 but further observations are required to investigate the temporal change. Continued and repeated earthquake observations could provide information on post-seismic behavior of the megathrust and recovery process of the stress state.
Year of Publication: 2013
Research Program: IODP Integrated Ocean Drilling Program
Key Words: 07 Marine Geology and Oceanography; Asia; Far East; Honshu; Integrated Ocean Drilling Program; Japan; Japan Trench; Japan Trench Fast Drilling Project; Miyagi Japan; North Pacific; Northwest Pacific; Pacific Ocean; Seismicity; West Pacific
Record ID: 2015031168
Copyright Information: GeoRef, Copyright 2017 American Geosciences Institute. Reference includes data supplied by, and/or abstract, Copyright, American Geophysical Union, Washington, DC, United States

Similar Items