Non-destructive X-ray computed tomography (XCT) analysis of sediment variance in marine cores

Author(s): Oti, Emma; Polyak, Leonid V.; Dipre, Geoffrey; Sawyer, Derek; Cook, Ann
Author Affiliation(s): Primary:
Ohio State University, Columbus, OH, United States
Other:
Byrd Polar Research Center, United States
Volume Title: AGU 2015 fall meeting
Source: American Geophysical Union Fall Meeting, Vol.2015; American Geophysical Union 2015 fall meeting, San Francisco, CA, Dec. 14-18, 2015. Publisher: American Geophysical Union, Washington, DC, United States
Note: In English
Summary: Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture where, and to what extent, the burrow tubes deviate from the sediment matrix. Future research will correlate changes in variance due to bioturbation to other features indicating ocean temperatures and nutrient flux, such as foraminifera counts and oxygen isotope data.
Year of Publication: 2015
Research Program: IODP Integrated Ocean Drilling Program
Key Words: 07 Marine Geology and Oceanography; Atlantic Ocean; Cores; Expedition 308; Gulf of Mexico; Integrated Ocean Drilling Program; Marine sediments; North Atlantic; Sediments
Coordinates: N271500 N280600 W0890000 W0942500
Record ID: 2016096179
Copyright Information: GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data supplied by, and/or abstract, Copyright, American Geophysical Union, Washington, DC, United States