Reduced carbon cycle resilience across the Palaeocene-Eocene Thermal Maximum

Online Access: Get full text
doi: 10.5194/cp-14-1515-2018
Author(s): Armstrong McKay, David I.; Lenton, Timothy M.
Author Affiliation(s): Primary:
University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
Other:
University of Exeter, United Kingdom
Volume Title: Climate of the Past
Source: Climate of the Past, 14(10), p.1515-1527. Publisher: Copernicus, Katlenburg-Lindau, International. ISSN: 1814-9324
Note: In English. 92 refs.; illus., incl. 1 table
Summary: Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum (PETM) at ∼ 56 Ma and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is consistent evidence of destabilisation of the carbon cycle in the ∼ 1.5 Myr prior to the PETM, elevated carbon cycle and climate instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and different drivers of carbon cycle dynamics preceding the PETM and ETM2 events. Our results indicate a loss of "resilience" (weakened stabilising negative feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM and in the carbon-climate system following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province eruptions, with volcanism-driven warming potentially weakening the organic carbon burial feedback. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean temperature.
Year of Publication: 2018
Research Program: ODP Ocean Drilling Program
Key Words: 02 Geochemistry; 12 Stratigraphy, Historical Geology and Paleoecology; Atlantic Ocean; C-13/C-12; Carbon; Carbon cycle; Carbon dioxide; Cenozoic; Climate change; Correlation; Cycles; Feedback; Geochemical cycle; Isotope ratios; Isotopes; Leg 208; O-18/O-16; ODP Site 1262; Ocean Drilling Program; Oxygen; Paleocene-Eocene Thermal Maximum; Paleoclimatology; Paleoenvironment; Paleogene; Paleotemperature; South Atlantic; Stable isotopes; Statistical analysis; Tertiary; Walvis Ridge
Coordinates: S271100 S271100 E0013500 E0013400
Record ID: 2019051805
Copyright Information: GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data from Copernicus Gesellschaft, Katlenburg-Lindau, Germany
LEADER 04540naaaa2200637zu 4500
001 2019051805
003 ViAlAGI
005 20190626150803.0
008 190626e201810 vp a 0 0 eng d
034 0 |a a  |d E0013400  |e E0013500  |f S271100  |g S271100 
040 |a ViAlAGI  |c ViAlAGI 
072 7 |a 12  |2 georeft 
072 7 |a 02D  |2 georeft 
100 1 |a Armstrong McKay, David I.  |u University of Southampton, National Oceanography Centre Southampton, Southampton 
245 1 0 |a Reduced carbon cycle resilience across the Palaeocene-Eocene Thermal Maximum 
300 |a p. 1515-1527 
500 |a In English. 92 refs. 
500 |a Research program: ODP Ocean Drilling Program 
500 |a Affiliation: University of Southampton, National Oceanography Centre Southampton; Southampton; GBR; United Kingdom 
500 |a Affiliation: University of Exeter; ; GBR; United Kingdom 
500 |a Source note: Climate of the Past, 14(10), p.1515-1527. Publisher: Copernicus, Katlenburg-Lindau, International. ISSN: 1814-9324 
500 |a Publication type: journal article 
504 |b 92 refs. 
510 3 |a GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data from Copernicus Gesellschaft, Katlenburg-Lindau, Germany 
520 |a Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum (PETM) at ∼ 56 Ma and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is consistent evidence of destabilisation of the carbon cycle in the ∼ 1.5 Myr prior to the PETM, elevated carbon cycle and climate instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and different drivers of carbon cycle dynamics preceding the PETM and ETM2 events. Our results indicate a loss of "resilience" (weakened stabilising negative feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM and in the carbon-climate system following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province eruptions, with volcanism-driven warming potentially weakening the organic carbon burial feedback. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean temperature. 
650 7 |a C-13/C-12  |2 georeft 
650 7 |a Carbon  |2 georeft 
650 7 |a Carbon cycle  |2 georeft 
650 7 |a Carbon dioxide  |2 georeft 
650 7 |a Cenozoic  |2 georeft 
650 7 |a Climate change  |2 georeft 
650 7 |a Correlation  |2 georeft 
650 7 |a Cycles  |2 georeft 
650 7 |a Feedback  |2 georeft 
650 7 |a Geochemical cycle  |2 georeft 
650 7 |a Isotope ratios  |2 georeft 
650 7 |a Isotopes  |2 georeft 
650 7 |a O-18/O-16  |2 georeft 
650 7 |a Ocean Drilling Program  |2 georeft 
650 7 |a Oxygen  |2 georeft 
650 7 |a Paleocene-Eocene Thermal Maximum  |2 georeft 
650 7 |a Paleoclimatology  |2 georeft 
650 7 |a Paleoenvironment  |2 georeft 
650 7 |a Paleogene  |2 georeft 
650 7 |a Paleotemperature  |2 georeft 
650 7 |a Stable isotopes  |2 georeft 
650 7 |a Statistical analysis  |2 georeft 
650 7 |a Tertiary  |2 georeft 
651 7 |a Atlantic Ocean  |2 georeft 
651 7 |a Leg 208  |2 georeft 
651 7 |a ODP Site 1262  |2 georeft 
651 7 |a South Atlantic  |2 georeft 
651 7 |a Walvis Ridge  |2 georeft 
700 1 |a Lenton, Timothy M.,  |u University of Exeter 
773 0 |t Climate of the Past  |d Katlenburg-Lindau : Copernicus, Oct. 2018  |x 1814-9324  |n Climate of the Past, 14(10), p.1515-1527. Publisher: Copernicus, Katlenburg-Lindau, International. ISSN: 1814-9324 Publication type: journal article  |g Vol. 14, no. 10  |h illus., incl. 1 table 
856 |u urn:doi: 10.5194/cp-14-1515-2018